Performance of the Fixed-point Autoencoder
نویسندگان
چکیده
Original scientific paper The model of autoencoder is one of the most typical deep learning models that have been mainly used in unsupervised feature learning for many applications like recognition, identification and mining. Autoencoder algorithms are compute-intensive tasks. Building large scale autoencoder model can satisfy the analysis requirement of huge volume data. But the training time sometimes becomes unbearable, which naturally leads to investigate some hardware acceleration platforms like FPGA. The software versions of autoencoder often use single-precision or double-precision expressions. But the floating point units are very expensive to implement on FPGA. Fixed-point arithmetic is often used when implementing autoencoder on hardware. But the accuracy loss is often ignored and its implications for accuracy have not been studied in previous works. There are only some works focused on accelerators using some fixed bit-widths on other neural networks models. Our work gives a comprehensive evaluation to demonstrate the fix-point precision implications on the autoencoder, achieving best performance and area efficiency. The method of data format conversion, the matrix blocking methods and the complex functions approximation are the main factors considered according to the situation of hardware implementation. The simulation method of the data conversion, the matrix blocking with different parallelism and a simple PLA approximation method were evaluated in this paper. The results showed that the fixed-point bit-width did have effect on the performance of autoencoder. Multiple factors may have crossed effect. Each factor would have two-sided impacts for discarding the "abundant" information and the "useful" information at the same time. The representation domain must be carefully selected according to the computation parallelism. The result also showed that using fixed-point arithmetic can guarantee the precision of the autoencoder algorithm and get acceptable convergence speed.
منابع مشابه
Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملModel-coupled autoencoder for time series visualisation
We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the readout weight ...
متن کاملImplementation of Low-Cost Architecture for Control an Active Front End Rectifier
In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynam...
متن کاملThe Use of Autoencoders for Discovering Patient Phenotypes
We use autoencoders to create low-dimensional embeddings of underlying patient phenotypes that we hypothesize are a governing factor in determining how different patients will react to different interventions. We compare the performance of autoencoders that take fixed length sequences of concatenated timesteps as input with a recurrent sequence-to-sequence autoencoder. We evaluate our methods o...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016